首页 > 热点资讯内容详情

微软许建志:AI-First App,一个既残酷、又美好的时代 2023-05-23 09:08:32

内容编辑应该都有做网站专题的经历,通过给定网站模板套用来搭建页面。这样确实方便,但问题是对于千变万化的内容,并非几套,或者数十上百套模板就能够尽情呈现精华,更不用说在找模板匹配内容上花费的大量时间。

还有一种方法,是直接在“代码丛林”中找到合适的代码,用HTML构建页面框架结构,可以自行调整内容的布局、字体、颜色等外观属性。然而,编辑毕竟不是程序员,稍有不慎便迷失在大量代码中,搞出一推Bug还得前端来查找修改,反而浪费了更多时间。

事实上,内容专业不懂技术,技术专业不了解内容——是不分产业领域和工作职能,所有公司都头痛的问题。解决方法无非让内容人会写代码,或者让技术人做出“傻瓜式”呈现工具,前者不切实际,而后者却是大模型时代下AI能够为产业带来的最大变革所在。

然而,GPT能够实现的便捷化“威力”有目共睹,但当它实际落地,又会以什么形式呈现?对此,微软首席产品经理主管许建志认为,是如何运用AIGC的方法,通过自然语言直接生成网站:

“去年微软总部给到我们建议,让根据内容自动提供SharePoint网站主题的设计, 在大致了解市场格局之后我们发现,已经有很多Web厂商在着力开发这块儿。为了避免做“Me too”的产品苦苦追赶,我就突发奇想,如果把高度拉高,直接做网站的生成,就可以呈现完整的,包含内容、图片、设计、排版的页面,甚至可以设定网站内容的层次结构,更加贴近用户需求,从而直接使用。”

就这样,text-to-site应运而生。

访谈嘉宾

许建志,微软首席产品经理主管

负责OneDrive与SharePoint用户体验产品经理团队。在微软的职业生涯超过20年,工作经历涵盖众多产品部门,包括开发工具、Windows以及Azure。目前在生产力部门工作,引领和改善用户在微软生产力工具中的体验。

从ASP写脚本到text-to-site

想法固然重要,但罗马不是一日建成的。

目前的AIGC除了语义生成,还包括图片(text-to-image)和视频(text-to-video)内容的生成,但还缺少网站(text-to-site)直接生成的能力,这也是微软在近日宣布将AI助理Copilot加入到SharePoint的重要原因。

在没有Copilot之前,SharePoint主要通过企业应用程序的集成来实现网站开发,而当“Copilot in SharePoint”之后,通过使用生成式AI自动产生内容与设计元素,no write,甚至no design指日可待。

对于这一趋势,许建志感慨到:“这是SharePoint发展史中又一次改变游戏规则的变化。”

记得二十多年前,许建志写的第一本书是教授开发者如何开发网站,那个时候主要使用ASP写脚本。2001年,SharePoint正式推出,从需要写代码,到利用图形界面(GUI)来点选需要的页面与组件,后来又历经了no operate,实现了云端的SharePoint Online。

据许建志介绍,从第一代版本一路走来,SharePoint一直延续着no code的理念:“这次通过使用生成式AI,接受自然语言提示(prompt)会慢慢取代传统的GUI,可以更大幅度降低技术的应用门槛,只需要口头描述需求,连我五岁的女儿都可以在弹指之间直接创建网站。”

ASP写脚本到text-to-site,除了no code贯穿其中,no operate、no write,以及no design,都成为终极能力实现背后的理念助推力。而在这些理念的背后,又是技术的点滴突破为产品迭代不断赋予了创造性。

“GPT就是技术不断突破下的集大成者,微软现在有不少产品都整合了GPT的能力。当在给text-to-site进行产品命名时,考虑到将GPT能力在SharePoint上最大化呈现,我们使用了‘Copilot in SharePoint’。而如果是叫‘SharePoint Copilot’,只是将单独的产品加上了GPT的能力,但我们希望的是通过Microsoft365Copilot来主导整个生产力相关产品的AI体验,从底层把数据和能力打通。”

自然语言提示、落地数据、复杂提示

截至目前,Copilot in SharePoint可以实现的功能包括:自然语言提示(Natural Language Prompt)、落地数据 (Grounding Data),以及复杂提示 (Complex Prompt)。

其中,判断自然语言输入能力的大小主要在于所需prompt的简化程度。比如,当输入“onboarding site (员工入职) ”,通过两个词的提示,能够让GPT根据其世界知识推荐需要的页面和内容,并通过Copilot来创建网站。这样的能力实现主要在于大语言模型无需用户遵循精准提示,使用类似“I need an onboarding site” 或是“Create an onboarding site for me”就可以达到一样的效果。

“当我自己在使用Copilot in SharePoint的时候,发现了一些意想不到的效果。像在输入不完全精准prompt的情况下,GPT产出的内容并不会受到影响。有一次我在给美国的副总裁展示text-to-site的时候将单词错输成“appl purple theme”,虽然对方给到我善意提醒,但我还是故意按了回车键,成功完成网站主题的设置。”

基于向量处理文字之间的关系而非关键字的比对,GPT实现了“错字过滤”,从而更好地理解用户意图。

不过,虽然可以通过世界知识实现提示,但对企业内部的私有数据如果没有给到内容,GPT还是无从知晓。所以,想让生成的网站具备实用性, 必须把页面内容的个性化程度做到极致才能更好落地。

在个性化数据上,微软的优势在于客户有自己的云上数据,包括公司目录、文档、邮件、会议记录、网站……各类数据都可以在云上获取。底层通过Microsoft Graph把用户选定的落地数据提供给在同一个云里的GPT模型, 便可以在隐私资讯不外流的情况下生成个性化网站。

例如输入:

“I need an #ODSP onboarding site for product managers with teal theme. Please include a welcome message from @Adam on the first page”。

“上述提示包括了目的(onboarding site),对象(product managers),设计(teal theme),另外还有指定来自特定人员(Adam)的一个页面区域(welcome message)。这些元素的顺序并不重要,也都可以选择, 用户可以自己根据需要进行组合,看是新增或移除。”

其中,提示里“#”标示的是通过微软的Viva Topics,使用AI在企业内网自动建立出来类似维基百科的关键字或缩写。#ODSP是落地数据,会取出缩写的意义(OneDrive & SharePoint)、相关的人与相关的文件列表给到GPT。@Adam也是落地数据, 可以把标示人员的名字、职称和邮件提供到GPT模型里,从而产生出推荐网页的内容。

相关标签: 微软许建志 AI First App 一个既残酷

发布评论